skip to main content


Search for: All records

Creators/Authors contains: "Chauhan, Aabhas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Scientific literature, as one of the major knowledge resources, provides abundant textual evidence that has great potential to support high-quality scientific hypothesis validation. In this paper, we study the problem of textual evidence mining in scientific literature: given a scientific hypothesis as a query triplet, find the textual evidence sentences in scientific literature that support the input query. A critical challenge for textual evidence mining in scientific literature is to retrieve high-quality textual evidence without human supervision. Because it is non-trivial to obtain a large set of human-annotated articles con-taining evidence sentences in scientific literature. To tackle this challenge, we propose EVIDENCEMINER, a high-quality textual evidence retrieval method for scientific literature without human-annotated training examples. To achieve high-quality textual evidence retrieval, we leverage heterogeneous information from both existing knowledge bases and massive unstructured text. We propose to construct a large heterogeneous information network (HIN) to build connections between the user-input queries and the candidate evidence sentences. Based on the constructed HIN, we propose a novel HIN embedding method that directly embeds the nodes onto a spherical space to improve the retrieval performance. Quantitative experiments on a huge biomedical literature corpus (over 4 million sentences) demonstrate that EVIDENCEMINER significantly outperforms baseline methods for unsupervised textual evidence retrieval. Case studies also demonstrate that our HIN construction and embedding greatly benefit many downstream applications such as textual evidence interpretation and synonym meta-pattern discovery. 
    more » « less